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The laminar f low between finite rotating disks with a shroud has been analyzed using a 
velocity and a stream function formulation, employing Galerkin's method with B-spline 
basis. Though results from both formulations are in good agreement with the LDV data on 
velocity profiles, and with each other, we find the stream function formulation clearly 
superior computationally, and we employ it subsequently to study heat transfer between 
the disks. The calculations show strong boundary-layer character near the disks. The 
Nusselt number depends upon both geometry and the Reynolds number. 
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1. In t roduc t ion  

The flow between rotating disks and the flow between rotating 
cylinders constitute two classes of swirling flows that have 
occupied a central position in the fluid mechanics research of 
this century. When the geometry of the flow domain is infinite 
in one dimension, leading to disks of infinite radius or to 
cylinders of infinite axial extent, the governing equations can 
be reduced to a system of ordinary differential equations. The 
solution of these equations was long thought to represent 
physical systems. However, it is now known that infinite 
geometry and finite geometry lead to qualitatively distinct 
behavior. For rotating cylinder flows, the infinite geometry 
provides for supercritical bifurcation of the Couette flow into 
Taylor vortex flow, but in a finite geometry the end effects are 
always felt irrespective of the aspect ratio (Benjamin, 1978; Dai 
and Szeri, 1990). For rotating disk flows, the infinite geometry 
supports a rich bifurcating structure. However, this does not 
seem to be the case for finite disks for which only one solution 
seems to be realizable (Szeri etal., 1983a). 

The first systematic study of rotating disk flows, the subject 
of the present investigation, was made by Karman (1921). 
Karman postulated that axial velocity is independent of the 
radial coordinate. This postulate led to a similarity transforma- 
tion, which was later shown by Batchelor (1951) to be applic- 
able even when the fluid at infinity is rotating about the axis 
of the disk. Based on the examination of the governing equa- 
tions, Batchelor showed that at high Reynolds numbers a thin 
boundary layer develops on each disk, with the main body of 
the fluid rotating at a constant rate, when the fluid is enclosed 
between two infinite disks. An excellent review of the work on 
infinite disk flows can be found in Zandbergen and Dijkstra 
(1987). 

Finite disks have been studied by Szeri and Adams (1978), 
who used an approximation in which the radial variation of 
shear stress is neglected. The equations become parabolic in 
this approximation, and the flow is adequately described by a 
single dimensionless variable, the Ekman number, E = v/s2co, 
where s represents the separation between the disks, 09 is the 
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rotational speed, and v is the kinematic viscosity. When the 
film between the two finite disks is "thick" and either or both 
disks are rotating, Adams and Szeri (1982) find the flow to be 
characterized by five dimensionless parameters: the rotational 
Reynolds number Re = r2t~s/v, the through-flow Reynolds 
number RQ = Q/21tvs where Q is the volumetric flow rate, the 
ratio of rotational speeds co2/t~1, and two geometric ratios 
2 = r2/s and A = r2/(r 2 - rl) .  Here r 1 and r 2 > r 1 are the inner 
and outer radius, respectively, of the disks. 

Szeri et al. (1983b) use laser-Doppler measurement of the 
velocities and find the equilibrium flow unique. With one disk 
rotating and the other stationary, the midradius "limiting flow" 
mimics the Batchelor profile of infinite disk theory. Other 
profiles, predicted by infinite disk theory to co-exist with the 
Batchelor profile, were neither observed experimentally nor 
calculated numerically by the finite disk solutions. 

The flow between two finite rotating disks enclosed by a 
cylinder was investigated both numerically and experimentally 
by Dijkstra and van Heijst (1983). They also found the solution 
to be unique for all values of the parameters considered: of the 
Batchelor type for weak and of the Stewartson type for strong 
counterrotation. 

More recently Brady and Durlofsky (1987) investigated the 
relationship of the axisymmetric flow between large but finite 
coaxial rotating disks to the Karman similarity solution. They 
combined asymptotics with numerical analysis in a method 
that has excellent potential for application to large aspect ratio 
problems in general, and showed that the finite disk solution 
and the similarity solution coincide over decreasing portion of 
the flow domain as the Reynolds number increases. Although 
this conclusion might seem counterintuitive and perhaps defies 
old wisdom, it does reinforce our assertion that finite disk and 
infinite disk flows are qualitatively different (Szeri et al., 1983b). 

Some more recent work on finite disk flows includes Chang 
et al. (1989), Tzeng and Humphrey (1989), Fromm (1989), and 
Tzeng and Fromm (1990). These works are concerned with 
co-rotating disks, a problem that finds relevance in magnetic 
recording. A recent monograph by Owen and Rogers (1989) is 
also devoted to flow and heat transfer in rotating disk systems. 
While we are concerned with the flow and heat transfer in finite 
rotating disks with no superposed flow, most of Owen and 
Rogers' work considers superposed flow with radial or axial 
entry into and radial exit from the enclosure. This has applica- 
tions in turbomachinery. More work on rotating cavities is by 
Randriamampianina etal. (1987, 1989). However, they consider 
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mostly the flow and heat transfer in a Boussinesq fluid, using 
a spectral Tau-Chebyshev method. 

Despite the availability of solutions for finite disks, the 
computation of disk flows is far from elementary. Our first goal 
in this paper is a comparison of two formulations: (1) the 
velocity formulation, and (2) the stream function formulation, 
both employing Galerkin's method with B-spline basis. Our 
second objective is to utilize the basic flow field in calculating 
heat transfer between the finite rotating disks for constant- 
property Newtonian fluid under various geometric and dynam- 
ic conditions. We will demonstrate, in comparison with our 
earlier experimental data, that either of the Galerkin-spline 
formulations leads to results of good accuracy. 

2. Analysis 

The flow field is bounded by two disks of radius r2, located at 
z = 0 and z = s, in a cylindrical polar coordinate system (r, 0, z), 
and by two concentric cylinders of radii r 1 and r2, r2 > r~ > 0. 
Figure 1 shows a part of the cylindrical cavity. The angular 
velocity of both the bottom disk and the outer cylinder, which 
is firmly attached to the bottom disk, is 091 . The top disk and 
the inner cylinder are rotated with angular velocity to 2. 

Assuming rotational symmetry, the momentum and con- 
tinuity equations take the form 
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Figure 1 Part of the cylindrical cavity 
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Here (u, v, w) are the (r, 0, z) components of the velocity, p is 
the pressure, p is the fluid density, and V 2 is the Laplacian in 
cylindrical coordinates. 

Since we intend to expand the unknowns in Equations 1 and 
2 in series of splines, we normalize the coordinates (r, z) accord- 
ing to 

7 - -  r 1 Z 
x - -  , y = -  

r 2 -- r 1 S 

so that 
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B-splines in x, y directions 
Moment coefficient on one side of rotating disk 
(Equation 30a) 
Thermal conductivity 
Hydraulic diameter (Equation 24) 
Frictional moment on one side of rotating disk 
(Equation 30b) 
Nusselt number (Equation 24) 
Dimension of approximating subspace (Equation 6) 
Pressure 
Prandtl number 
Heat flux across the ith surface 
Inner, outer radii of the cylinders 
Cylindrical coordinates 
Reynolds number (=  r 2 o J s / v  ) 

Axial separation between the disks 
Temperature, normalized temperature 
( = ( T -  T 1 ) / ( T  2 --  T~)) 
Temperature of inner cylinder and top disk 
Temperature of outer cylinder and bottom disk 
Bulk temperature, normalized bulk temperature 
(Equation 23) 

X 
U, t), W 

x , y  

Dimensionless radial coordinate (=  r /+  x / A )  

Radial, tangential, and axial components of 
velocity, normalized velocity 
Normalized radial and axial coordinates 
(=(r  - r l ) / ( r  2 - r l ) ,  z / s )  

G r e e k  s y m b o l s  

gq 

A 
F 

2 
V 

P 

69 

O~ i 

032 

Thermal diffusivity 
Error in global energy conservation (Equation 22) 
Geometric ratio ( = r 2/(r 2 - r l)) 
Geometric ratio ( = s/ (r  2 - rl)) 
Geometric ratio ( = r f f r2 )  
Geometric ratio ( = r 2 / 8  ) 

Kinematic viscosity 
Density 
Dimensionless stream function (Equation 8) 
Maximum of to 1 , to 2 
Angular velocity of bottom disk and outer cylinder 
Angular velocity of top disk and inner cylinder 
Dimensionless angular velocity of fluid 
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2.1. Ve/oci~ formulat ion 

The equations of motion and continuity arc nondimension- 
alized according to 

{u, v, w} = r~o9 fi, Xf'/., 7 ff ' p = Pr~°)eP 

where we introduce the geometric parameter 2 = rz/s. 
We eliminate the pressure by cross-differentiation between 

Equation la and lc; this and nondimensionalization brings 
Equations 1 and 2 into the form: 

d [ du du 1 ] (A)2 O ruOW+ wOW] - -  u + w - - - -  Xf~ 2 - 
~y ~x ~y A ~xL Ox OyJ 

_ u ~ (V2w)] 
' 

(3a) 
A2 Re J 

1 
- -  = [XV~(Xf~) - t ]  (3b) 

A2 Re 

d(X2f~) d(X2~) 
u - -  + w 

dx dy 

a(Xu)  ~(Xw) 
- - +  --0 

gx gy 
(4) 

Here we have dropped the overscore bar for convenience, and 
the Laplacian is 

V 2-- A 2 t3 2 A ~ 2 2 ~2 + + - -  
~y2 

The only dynamic parameter of the problem is the Reynolds 
number, Re -- r2tos/v. 

The boundary conditions accompanying Equations 3 and 4 
are 

/ , / = 0 ;  1)-~-Xo,)1,2; w = O  at y = 0 , 1  
(Sa) 

u = 0 ;  v=r/a)~,e)~; w = 0  at x = 0 , 1  

In addition to the boundary conditions, we also require satis- 
faction of the regularity conditions 

du 0 at x 1 and dW=o at y = O  (5b) 
dx dy 

which are obtained by evaluating the continuity equation 
(Equation 4) on the boundaries. These additional conditions 
account for the increase in the order of the equations resulting 
from cross-differentiation (Galdi and Padula, 1989). 

Let {A~x): 1 < i < N~} be the set of normalized B-splines 
relative to r~, fl~, 6~; and let {B~(y): 1 < j  _< N~} be the set of 
normalized B-splines relative to ~,, fl~, 6~ (de Boor, 1978). Here 
7, t ,  and 6 represent the order of the splines, the partition, and 
the smoothness index, respectively. We seek approximate solu- 
tions to Equations 3-5 in the form 

u{x, y) = 2 uuA~x)B~Y) 

Nx Nr N. N~ 
~(x, y )=  Z ~ f],jA,.(x)B~(y)+ ~ ~ fiojA,.(x)B~(y) (6) 

i l l  j = l  iffil jffil 

i l l  jffil 

Heref~, g~ are the spline-expansion coefficients of the functions 
f(x)eC®[0, 1]; g(,v)eC®[0, I], which satisfy the boundary con- 
ditions (Equation 5). These functions are designed to smooth 
the boundary data and thus make the problem conform to the 
conditions of the Leray-Hopf-Ladyzhvnskaya theorem on the 
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existence of a solution of the Navier--Stokes equations in a finite 
domain (Benjamin and Mnllin, 1981). 

With the constraints 

u=~=f~=j=w=~=0, ~ = I , N . ,  u~_L j=O,  Vj 

u~ = flip = wi~ = O, fl = l ,  N~, wi2 = O, Vi 

the expansions of Equation 6 satisfy all the boundary and 
regularity conditions of the problem. Denoting spline inner 
products by 

fo ~,.~") = ~ , . ) ( z ) ~ ) ( z ) ~ , ) ( z ) d z ,  ~.)-,j - ~)(z)~¢)(z)az 

"h=~(=)_+ =ijl+ = X"(x)AI")(x)A}b)(x)AI°(x) dx, 

-~I;) = ;] X*(x)AIm(x)A~°(x)dx 

fo -~ ( ' )  -- x -  %)Ap)(x)A~.~)(x)A~)(x~x, 

-ff'LIj) = f ] x-L(x)AIb)(x)ASd(x)dx 

where a < b < c ,  = = ' a + b + c + 2  (if a > 0 ) +  1 (if b>0) ,  
K > 0, L > 0, the superscript a, b, or c denotes the ath, bth, or 
cth derivative of the B-spline. Projecting Equations 3 and 4 
onto the subspace with basis A l ® Bj, we derive the following 
set of nonlinear algebraic equations: 

i,m=l j, nfX 

1 --  - -  ~ t'~ "~-=~(0) ,~(1) 
A (f~f"gJg" + 2fig~=. + , ,q,, . . j .  k,. i.~ 

/(1 ~ ' ° )  ) ] )  - - ( 1 )  1) + w,j\-~ k,,, + Ply., ~ j .  

N,{  A,~, ~(o)) _,_ ;~<ol,--(,)-i "l- Z ~1i  2--(2)  - -  1) uij[zq (A pl  u + - T . ,  e'ki "q a 
i=1 j = l  

( A / 2  40) 2--(4)  ~"i ' (1)~- .+ l'+ki ~lj jj~0 (Ta) + ~- wq[zts (A pl u + -+u,  :2"Zi'(i)~2)'I'~ 

Nx Ny 
A2 Re ~ ~ ( f , a .  + fl,.,,) 

i,m=l j,n=l 

[-u,.Z(9)/'2 -~(o) + p3, i . )  + --U--+tam--li'J X - - ( 1 )  u, "fi'~(o) ~ ( l ) ]  
L J lJntA `~k i "  

N~ Ny 
- fl+j)[z 0 (A p3ki + 

i = l  j = l  

~=~(o)=2)1 = 0 (Tb) + ' ~ r ~ k i ~ U  J 

i=1 j=Z "~ "t- 
*" ki -O,""ki =.n J -- 0 (7c) 

2 < k < N ~ -  1, 2 < l < N y - 1  
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2.2. Stream function formulation 

The equation of continuity (Equation 4) is identically satisfied 
by taking 

= - - -  ,~ . . . .  (8) 
f~ X Oy' X Ox 

where ~ is the nondimensional stream function. We drop the 
overscore bar again. 

Substituting Equation 8 into Equation 3, we find (Szeri et 
al., 1983b) that the equations of motion reduce to 

A t;3(ut~' D2Ut~)O(x, y) F/~ 2 0(X~'~2)0--~ = - 2 R--el(XaD2+4A~x)D2W(9a) 

O(W, X ~ft) 1 
A = - -  - -  X 3Da(X2f~)  (9b) 

O(x, y) 2 Re 

The operator D a in Equations 9a and 9b is defined by 

D 2 = ~-~ A 2 + 2 2 
0x 2 X dx 

The boundary conditions for Equations 9a and 9b are 

01t[ / 0) 1 03 2 
- - = ~ = 0 ,  f~ , at y = 0 , 1  
~y co co 

0W 
(1o) 

O3 2 CO 1 
- - = ~ F = 0 ,  D = r / - - , - -  at x = 0 , 1  
~X f.0 C0 

where co = max {o l ,  o~}. We note that these conditions specify 
unbounded dissipation at points (0, 1) and (1, 1). This grossly 
unrealistic property is removed by smoothing out boundary 
data, as before. 

We seek weak solutions of Equation 9 in the form 
N x - 2  N r - 2  

~(~,y)= E E v/H/(~)~,<y) 
~=3 ~=3 (11) 

Nx Ny N x -  1 N~- 1 

Q(x, y) = ~. ~ f~g,A,(x)B,(y) + ~ ~ DoA,(x)B:(y ) 
s=3 r=3 1=2 j=2  

Here f, ,  l < s < N ~ ;  g,, l < r < N ~ ,  are chosen such that 
Equation 11 satisfies the boundary conditions of the problem, 
leading to 

f ~ = 0 ,  f ~ = l ,  2<_i<_N~ 
(12) 

g j= l ,  I<j<N~,-I, ~ = 0  

Galerkin's method with Equation 11 discretizes Equations 
9a and 9b as follows: 

N x - 2  N ? - 2  
Re ~ ~ (I) 2 ~ ( 2 )  "=~(3)~ 

i ,p=3 / j = 3  

A 3 " ~ ( 4 )  __ A"~(1) ' I  

J 2 ~ ( 4 ) [ ~ ( 0 )  .-1. ~ ( 1 )  '=~(1) /A2~(3)  _ A3"~-'~(4)~ 

]2  Aff(,$)'~=T( 1 ) "1 
- -  "~ ~ j l t ' "  *kpi) 

+ 22 Re ~,, o ~(o)t?(~)  ~_ ~(~)~ J$~P~P 1= ~spk~r l t  ~ ~ t l r !  
Ls=2 r = l  p=2 t=2 

Nx-1 Ny-1 
+ y .  ~ ,-, . - ~ ( o ) ~ . )  

&~ij&~pl ~ "~ipk~ljt 
i ,p=2 j , ;=2  

Nx N 1 l 

J s ,p=2  r , t = l  

Nx-2 N~..2 
+ E ~0) 4-_'2~(5) 9&3~='~'(4) % j [ z  u (A ~0 u + . . . . .  ki 

t=3 j = 3  

A 2 ~ ( 2 )  - - (1 )  + . . . .  u - 3An3u ) 

(13a) 

2z2 )  - - ( 2 )  _ ~(k)))  ~ , ~ s ) ~ ( o ) ~  = 0 + 2A2 z u (Ap0 u + "' "U v~ki a 

Re T, W,.fft~ 
i=3  j = 3  p=2 t=2  

Nx-  1 N ~  1 A2"~12)~ + ~2"~"A(O)z~2)" I 
- 5'. f~p ,E~°) (3A~ ) + .--" r ~ k p ,  "~ e-.~.p . 

p=2 t=2 

Nx- 2 N~.2 N y - I  

+ Re E E v,,/,g, 
i=3 j=3  s=2 r = l  

r ~ (1 ) / 9 -~ (o )  Ap-j(1)~ A ~ (  1)'~'~( 1)1 
X L ~ r l j ~  ~kis ~-  kls] - -  ~ l j r - - ~ k s i J  

Nx Ny-  1 

-- E E fsgr[A~O)(3p-3(kl, ) + A ~  (2)) + 2 ~ 2 ) ~  )l = 0 (13b) 
S=2 r = l  

We note here that although Equation 9a is fourth order in 
W, we require only that &,  Bj e C 2 (0, 1), on account of 
integration by parts when carrying out the discretization. It is 
this that permits us to employ the stream function formulation. 
This technique is, of course, not available when employing finite 
differences, which forces one to solve a stream function- 
vorticity formulation. 

2.3. Equation of  energy 

The nondimensional form of the energy equation is 

Re[~ 0T ~y2_j (14) 

and we adopt the boundary conditions 

T(0, y ) = 0 ,  T(1, y ) = l ,  ~(x, 0 ) = l , T ( x ,  1 ) = 0  (15) 

Here T = (T - Tt)/(T2 - TI) is the nondimensional tempera- 
ture, and Pr = v/ct is the Prandtl number. We again drop the 
overscore bar. 

Provided that 

h i = 0  , h / = l ,  2 < i < N x  (16) 

k ~ = l ,  l < j < N y - 1 ,  kN~=0 

the expansion 
Nx-  I N ~  1 

T(x, y) = E z~ TUA,~x)Bj(y) + 2, 2., h,kjA,~x)B,(y) (17) 
i=2 j = 2  /=1 j = l  

satisfies the thermal boundary conditions (Equation 15). It will 
also satisfy the energy equation (Equation 14), provided that 
the T u solve the linear system 
N x -  1 N y -  1 Nx Ny 

~, ~, AuuT 0 = -  ~ ~ Auuh, k J (18) 
1=2 j=2  t=1 j = l  

where 
2 2  a ! + 

a,,i, = E" + a "  " )  kay "" J 
Nx~ 

- R e  ~ r .  "D~'(l) ?(0)  -L u, "p-~'(0) '7(1)1 (19) 
L ~ m n - - x k m l ~ l n j  - -  " ' m n = * k l m ~ l n j J  

m=l  n = l  

and urn, w~ are from Equations 7 or 8. 
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Let @, 1 _< i _< 4, denote the heat flux into the fluid across 
the ith surface of the enclosure, and let ~ be its nondimensional 
counterpart. We then write 

qi 
q~ = 2~ks(T 2 - Tx)' 1 _< i < 4 (20) 

Here i = 1, 2, 3, and 4 refers to the surfaces x = 0, y = 0, x = 1, 
and y = 1, respectively. 

Employing the notation 

fo fo ~l= X(x)A,(x)dx, b~= B~(y)dy 

we find 
(N,- i ~, 

} k j = 2  j = l  

~2 A2B,I(0) s ~ - i  

A i = 2  

£/a = -qAA~¢~(1) s ~  T~ _~.~b~ 
) = 2  

~ ,  ~2BN, (1) IN~ 1 ~ } 
= ~T~.s _ 1 + ~h~ (21) 

A k i = 2  1=1 

Global energy conservation leads to the equation ~ =  1 th = 
0. In order to judge the accuracy of our numerical scheme 
for calculating the temperature distribution T(r, z), we compute 
an error e~ with definition 

[~1 + ~/2 + ~3 + ~1 
s~ - (22) 

I@11 + Iq2l + I~1 + I ' i , I  

As the f low under consideration forms a closed system, we • 
define the Nusselt number wi th reference to the bulk tempera- 
ture, Tb, which is defined as 

Tb = ~,~ ~'o vT dr dz 
I,? ~o v dr dz (23a) 

or, in nondimensional form, as 

Tb = E~i:'l ~_~=1 (Tu + hikjX[~u + ftg.i)ai~)i 
~N~ ~N~ tQ (23b) 

t =  1Zld = 1 ~. ij "~- fioj)(liDj 

The Nusselt numbers Nu (°, i = 1, 2, 3, 4, are now defined in 
terms of the heat-flow rates q~, i = 1, 2, 3, 4, and the bulk 
temperature as follows (dropping the overscore bar again): 

ql -Nu(1) k~27%STb = ( L /  (24a) 

-- Nut2)f k'~"dr 2 -- r2X 1 - Tb) (24b) q 2 -  ~)"I, 2 

Nu (3,(k~2~r2 s ( l -  (24c) q3 = \ L /  Tb) 

, k 
q , =  - N u  ( )~-~)g(r2--r2)Tb (24d) 

Here L = 2s/(1 + F) is the hydraulic diameter of the annulus, 
and F = s/(r2 -- rO. 

2.4. So lu t ion  o f  the Non l inear  equat ions 

The non-linear equations (either Equation 7 or 13) take the 
form 

~ ,  ¢,) = o (25) 
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where G: R" = -= ~ • --, R" is a U-mapping (l > 2), dim ~ = m 
and d i m O = n - m > l .  Here ~ e ~  is a vector of state 
variables and ~ e • a vector of parameters A, A, Re, Pr. 

The solution set of Equation 24 is a x-dimensional manifold 
in R'. When z = 1 the manifold becomes a path. We intend to 
use the Gauss-Newton method for local iteration, and the 
method of continuation for tracing the path. For convenience 
we shall use ( instead of (~, ~b) in the sequel. 

2.4.1. Local i t e ra t ion .  Let ~k be our current point. The next 
point (k + 1 of the iteration sequence is defined by the Gauss- 
Newton method as follows (Ortega and Rheinboldt, 1970): 

~k+ 1 = ~k _ I-DG(~k)TDG(~)- 1]DG(p)rG(Q) (26a) 

where DG(~k) is the Jacobian of G evaluated at ~k. Equation 
26a is inconvenient computationally. It can be verified, how- 
ever, that (k+l will satisfy Equation 26a if it satisfies the 
condition 

DG(~k)((k _ (k+ 1) = G(Q) (26b) 

Numerically, Equation 26b can be implemented in various 
ways. With QR-factorization of DG(Ck) r, we have 

~ k _ Q + X = Q  0 G((k) (27) 

Then starting from any point ( sufficiently close to the solution 
manifold, we apply the following algorithm: 

(i) set  ~o = ; ;  
(ii) for k = 0, 1 . . . .  until convergence 

(a) solve Rr/t = G(Q) for/~¢R"; 
/ x 

(b) compute the next iterate Q + I = Q _  Q ( ~ ]  
\ o /  

2.4.2. C o n t i n u a t i o n  a l ong  t h e  pa th .  For a solution 
point ~ on the path, we consider again the QR-factorization 
of DG(0T: 

Clearly the last column vector of the orthogonal matrix Q, 
namely Qe., is the tangent vector of the path. Here e. = 
(0, . . . .  O, 1) r e R" at £. 

The simplest way to get a predictor for the next point 
on the path is to set 

(o = ~ + aQe, (29) 

where o is a suitable step size. The direction of the continuation 
can be controlled by the sign of the last component of Qe~. 

Continuation is necessary at high Reynolds numbers in 
order to achieve convergence, when ~o= 0 is not in the 
neighborhood of attraction of the solution. But even at low 
Reynolds numbers the computational effort required is de- 
creased when using path continuation. 

3. Resu l ts  and  d iscuss ion  

We set as our first task a comparison of the two formula- 
tions for velocity field. Let 8 and n represent the size of the 
nonlinear algebraic system for the primitive variable formu- 
lation (Equation 6) and the stream function formulation 
(Equation 11), respectively. By assigning N =  N x = Ny, we 
have pl = (N - 2X3N - 8) and n = (N - 4) 2 + (N - 2) 2. For 
the sequence N = {15, 20, 25, 3i} we obtain ~ = {481,936, 1541, 
2465} and n = {290, 580, 970, 1570}. In Tables 1 and 2 we show 
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T a b l e  1 Az imuthal  ve loc i ty  ( A = 1 . 0 7 1 4 ,  ~ .=20 .16 ,  R e =  
1054.51, x =  0.4) :  (a) stream funct ion fo rmula t ion ;  (b)  ve loc i ty  
formulat ion 

y Formulat ion N = 15 N = 20 N = 25 N -- 31 

0.2 (a) 0 .20274 0 .20156 0 .20070 0.20021 
( b )  - -  0.19316 0.19797 0 .19853 

0.4 (a) 0 .14368 0 . 1 4 3 3 5  0.14288 0 .14245 
( b )  - -  0.13410 0 .14338 0 .14232 

0.6 (a) 0 .12094 0 .12085 0 .12054 0 .12052 
( b )  - -  0.11092 0 .12285 0 .12052 

0.8 (a) 0 .07166 0 .07144 0 .07130 0 .07129 
(b)  - -  0 .06463 0 .07328 0 .07147 

T a b l e  2 Radial ve loc i ty  (A -- 1.0714, ~. = 20.16, R e  = 1 0 5 4 . 5 1 ,  
x = 0.4) : (a) stream funct ion fo rmula t ion ;  (b)  ve loc i ty  formulat ion 

y Formulat ion N = 15 N = 20 N = 25 N = 31 

0.2 (a) 0 .06464 0 .06393 0 .06376  0 .06372  
( b )  - -  0.05680 0 .06433 0 .06437 

0.4 (a) 0 .00322 0 .00332 0 .00339  0.00341 
(b)  - -  0 .00106 0 .00392 0 .00376 

0.6 (a) - 0 . 0 3 7 7 1  - 0 . 0 3 7 7 8  - 0 . 0 3 7 6 4  - 0 . 0 3 7 6 6  
(b)  - -  - 0 . 0 3 4 6 8  - 0 . 0 3 7 5 8  - 0 . 0 3 7 4 2  

0.8 (a) - 0 . 0 4 6 7 9  - 0 . 0 4 6 4 9  - 0 . 0 4 6 4 1  - 0 . 0 4 6 3 9  
(b) - -  - 0 . 0 4 0 8 0  - 0 . 0 4 7 0 4  - 0 . 0 4 6 2 5  

results of some numerical experiments. Increasing N in steps 
and calculating azimuthal velocity (Table 1) and radial velocity 
(Table 2) from the two formulations, we have rapid convergence 
with N increasing. But while the stream function results already 
seem to be accurate at N = 20, the velocity formulation yields 
comparable accuracy only with N = 31 in some cases. This 
lends unquestionable superiority to the stream function for- 
mulation for the present problem. This is also our conclusion 
from a study on natural convection in a horizontal cylindrical 
annulus (Garg and Szeri, 1992). We are thus advocating the 
stream function formulation when employing Galerkin's 
method, for the axisymmetric flow of a Newtonian fluid. 

By comparison with experimental data we can also demon- 
strate that the convergence of the numerical solution is to the 
true solution. Here we compare with the experimental data of 
Szeri et al. (1983b). This data was obtained by laser-Doppler 
measurements in an apparatus of r2 = 0.254 m, r~ = 0.0126 m, 
and s = 0.0126 m. Figure 2 depicts azimuthal velocity at five 
radial locations, x = 0.1, 0.3, 0.5, 0.7, 0.9, while Figure 3 shows 
radial velocity at two locations, x = 0.5, 0.7. Only the bottom 
disk and outer cylinder are rotated in this experiment, and 
calculations were performed with N~ = Ny = 31, using the 
stream function formulation. N~ = Ny = 31 was the maximum 
size the University of Pittsburgh's VAX, the computer used in 
our initial computations, could handle. Figure 4 shows the 
radial velocity for half channel at four different locations in a 
thin, ~ = 80, film. Agreement with experiments is, again, accept- 
able. Numerical prediction and experimental data are com- 
pared next for flow between counterrotating disks. Figure 5 
shows results for azimuthal velocity, indicating good agreement 
with experimental data. Comparison for radial velocities, 
shown in Figure 6, is less satisfactory. The reason for better 
results on azimuthal velocity than on radial velocity is, of 
course, that while the former is induced by the motion of the 
boundaries, the latter is brought about by the pressure field. 

Figure 7 compares the moment coefficient, Cm, on one side 
of the rotating disk for the present results against those 
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is given by 

2M 
C= = - -  (30a) 

ptoZr~ 

where the frictional moment, M, is given by 

;/ c0. M = 2~r2pv\o z + dr (30b) 
I 

In Equations 30, all quantities except Cm are dimensional. 
Having demonstrated the accuracy of the velocity field 

calculations, we now turn attention to heat transfer between 
the rotating disks. Figures 8 and 9 display temperature profiles 
in a "thick" film, s = 0.0126 m, (~ -- 20.16), and in a "thin" 
film, s = 0.003175 m, (~ -- 80), respectively. Close to the inner 
cylinder, x < 0.1, these figures display discontinuity of OT/Oy 
near the bottom disk. This aphysical situation arises in the 
computation due to the presence of a singularity in the thermal 
boundary conditions at the point (x, y)  -- (0, 0). There is 
another singularity in temperature boundary data at (x, y)  = 
(1, 1) leading to a similar, but not shown, discontinuity in 
t~r/ay. 
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Table  3 Error Sq in satisfying global 
energy conservation 

~. Re ~q 

20.16 203 0.061 
402 0.045 
600 0.035 
799 0.029 
997 0.025 

80.0 45 0.032 
545 0.030 

1 210 0.025 
2289 0.019 
3370 0.016 

To check global energy conservation, we computed the error, 
eq, of Equation 22. Table 3 shows results of the computer 
experiment. In these calculations, heat transfer rates, ql, 
i = 1, 2, 3, 4, were evaluated not strictly on the boundary but 
at x = 0.005, y = 0.005, x = 0.995, y = 0.995, respectively. This 
was necessary because of the singularities in the temperature 
boundary data. 

It is significant to note here that global energy conservation 
improves with increasing Reynolds number in our computa- 
tional scheme. This counterintuitive result is due to the fact 
that the inner and outer cylinders lose importance for heat 
transfer, that is, more and more of the action is concentrated 
at the disks, as the Reynolds number is increased. In con- 
sequence, the singularities in the boundary data also lose 
significance with increasing Reynolds number. 

The Nusselt number is plotted agamst Reynolds number in 
Figures 10 to 12. Figure 10 displays conditions for "thin" film 
geometry, ~. = 80, with one disk held stationary. The Nusselt 
numbers are constant for Re < 200. For Re > 1000, heat 
transferred from or to the cylinders becomes less significant, 
and most of the heat transfer occurs between the two disks. 
The shrouds are important for Re > 1000 only in defining the 
flow field but not the heat transfer. Figure 11 displays Nu versus 
Re for a "thick" film, 2 = 20.16. Qualitatively there is little 
change in comparison with the previous case for the Nusselt 
number on the disks, but the Nusselt number on both the 
cylinders behaves differently. A greater role for heat transferred 
from or to the shrouds is seen for this case than that for the 
"thin" film case of Figure 10. 

For counterrotating cylinders, Figure 12, the Nusselt num- 
ber varies little with the Reynolds number for Re < 200 on all 
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the surfaces. Besides, the Nusselt number values in this case 
are about an order of magnitude smaller than those in Figures 
10 and 11. 
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